| Document Title: Checking function, engine | Function Group:
210 | Information Type: Service Information | Date:
2014/6/5 0 | |---|------------------------|---------------------------------------|----------------------------| | Profile: | | | | # Checking function, engine #### Op nbr ### **Testing for possible causes** #### 1. First check: - O Fluid levels - O Control/warning lamps - O Instruments - O Battery voltage - O Fuses (correct rating) #### 2. Separate systems: O If two or more systems, and/or circuits work together. Check the systems/circuits individually. #### 3. If the pulling power of the machine is poor, the fault may be in the engine or the transmission: - O Then check the stalling speed, see specifications. - O If the engine stalling speed is within the prescribed values, the fault can be found in the transmission. - O If the engine stalling speed is low, check according to point below. #### 4. Checking engine: - O Check oil and coolant, discoloration, smell etc. - O Check exhaust pipe (sticky inside - O Check air filter and turbo. - O If the engine runs unevenly (imbalance-noise). - O Check for overpressure in header tank. - O Crankcase breather (overpressure-clogged). - O Oil dipstick, remove (overpressure). - O Exhaust smoke (colour-impurities, smell). - O Bleed the fuel system. - O Slightly loosen the delivery pipes [1] from the injectors (one at a time with the engine running). - O Check speed. - O Check feed pressure (before and after filter). - O Make a compression test (repeat with oil if incorrect). - O Check injectors. - O Check injection timing. [1] This check must not be carried out on low-emission engines, as the fuel injection pressure in these engines is very high. | Document Title: Description | · · | Information Type: Service Information | Date:
2014/6/5 0 | |-----------------------------|-----|---------------------------------------|----------------------------| | Profile: | | | | # **Description** Loader I150 is provided with a td102 type engine and loader I180 with a td122 type engine. In both cases the engines are straight, six-cylinder, turbocharged, four-stroke direct-injection diesel engines. Both engine types are available in a low-emission version. The output and torque curves for the respective engines are shown in Figure 1 and Figure 2. Figure 3 and Figure 4 show the torque curve for the low-emission engine in relation to a standard engine. The engine type designation, part and serial numbers are stamped on the left side of the cylinder block. For repair work on the engine, please refer to the separate service manual, see the foreword. #### Volvo bm I150 Figure 1 Output and torque curves, td102 Volvo bm I180 Figure 2 Output and torque curves, td122 ## Additional or new parts for low-emission engine | | L150 | L180 | | |----------------------------|----------|----------|--| | Engine designation | TD102KCE | TD122KHE | | | Pistons | New | New | | | Camshaft | = Std. | Std. | | | Cylinder head | Std. | Std. | | | Turbo | Std. | Std. | | | Intercooler | Т | Т | | | Additional coolant pump | Т | Т | | | | Built-in | Built-in | | | Injection pump | New | New | | | camshaft | New | NEW | | | pump element | New | New | | | cold-starting groove [1] 1 | No | No | | | idling change-over | - | _ | | | delivery valve | New | New | | | torque control | - | New | | | Delivery pipes | Std. | New | | | Injectors | Std. | New | | | Injection timing | New | New | | # Explanations: Std. Component which is included in the standard engine New New component as compared with the standard engine T Additional component as compared with the standard engine Figure 3 | 1 | Torque curve standard engine L150 | |---|-----------------------------------| | 2 | Torque curve, low-emission engine | Figure 4 | 1 | Torque curve, standard engine L180 | |---|------------------------------------| | 2 | Torque curve, low-emission engine | Figure 5 Emission values according to ece r49 # Figure 6 Emission values according to california 8-mode and iso 8178 [1]Omitted as it is not required on the low-emission engine | Document Title: Specifications L150 | Function Group: 210 | Information Type: Service Information | Date:
2014/6/5 0 | |-------------------------------------|---------------------|---------------------------------------|---------------------| | Profile: | | | | # **Specifications L150** ## Engine, L150 Unless otherwise stated, the following data apply to all three versions of the engine i.e. The basic, the low-emission and the high-altitude versions. #### General ## Type designation | basic version and high-altitude version | TD102GC Engine no. 497294 | |---|----------------------------| | low-emission version | TD102KCE Engine no. 497296 | ## Flywheel output at 35 r/s (2100 rpm) | basic and high-altitude version | 170 kW (231 hp) SAE J 1349 Net
170 kW (231 hp) DIN 70020 Net | |---------------------------------|---| | | 172 kW (234 hp) SAE J 1349 Net
172 kW (234 hp) DIN 70020 Net | #### Output gross at 35 r/s (2100 rpm) | basic and high-altitude version | 180 kW (246 hp) SAE J 1349 Gross | |---------------------------------|----------------------------------| | low-emission version | 182 kW (248 hp) SAE J 1349 Net | #### **Torque** | basic and high-altitude version | 980 N m (723 lbf ft) SAE J 1349 Net | |---------------------------------|---| | at 20.0 r/s (1200 rpm | 980 N m (723 lbf ft) DIN 70020 Net
1000 N m (738 lbf ft) SAE J 1349 Gross | | low-emission version | 1010 N m (745 lbf ft) SAE J 1349 Net | | at 18.3 r/s (1100 rpm) | 1030 N m (760 lbf ft) SAE J 1349 Gross
1010 N m (745 lbf ft) DIN 70020 Net | | Number of cylinders | 6 | |--|----------------------------| | Cylinder bore | 120.65 mm(4.750 in) | | Stroke | 140 mm(5.512 in) | | Cylinder capacity, total | 9.6 litre | | Compression ratio, basic version and high-altitude version | 15:1 | | low-emission version | 16:1 | | Compression pressure at starter motor revolutions | 2.6 MPa (26 bar) (377 psi) | | Order of injection | -5-3-6-2 - | | Idling speed, low | 10.8 ±0.5 r/s (650 ±50 rpm) (823 ±63 Hz) | |---|--| | high | 37.9±1.0 r/s (2275 ±60 rpm) (2880±75 Hz) | | Valve clearance, cool engine, inlet valve | 0.40 mm (0.016 in) | | exhaust valve | 0.70 mm (0.028 in) | # Stalling speed, basic and high-altitude versions | torque converter | 33.8 ±1.25 r/s (2025 ± 75 rpm) (2560 ± 95 Hz) | |---|--| | torque conv. + work hydr. against overflow) | 24.2 ±1.70 r/s (1450 ± 100 rpm) (1835 ±125 Hz) | # Stalling speed, low-emission version | torque converter | 33.7 ±1.2 r/s (2025 ±75 rpm) (2563 ±95 Hz) | |---|---| | torque conv. + work hydr. against overflow) | 25.0 ±1.7 r/s (1500 ±100 rpm) (1899 ±>127 Hz) | # **Service Information** | | · · | Information Type: Service Information | Date: | |--------------------------|-----|---------------------------------------|------------| | Starting engine Profile: | 210 | Service Information | 2014/6/5 0 | | Trome. | | | | # **Starting engine** #### **Description of function** With the ignition switch sw1 in position 3 the coil in relay re14 receives current via the ignition switch terminal 50. Relay re14 is activated and starter motor terminal 50 receives current via fuse fu15, relay re14 (30-87) and relay re13 (87a) and the starter motor is activated. #### Relay re13, starter lock-out When the selector control sw2a or any of switches sw43 or sw108 are moved to positions forward or reverse, the coil in relay re11 receives current, see description in section 4. Relay re11 is activated and the coil in relay re13 receives current. Relay re13 is activated and the current to the starter motor is interrupted, which prevents the starting of the engine with forward or reverse gear engaged. Our support email: ebooklibonline@outlook.com